
Task scheduling and load balancing in SDN-based cloud computing: A
review of relevant research

Masoumeh Mahdizadeh , Ahmadreza Montazerolghaem *, Kamal Jamshidi
Faculty of Computer Engineering, University of Isfahan, Isfahan, Iran

A R T I C L E I N F O

Keywords:
Software-defined cloud computing
Resource allocation
Cloud computing
Load balancing
Task scheduling

A B S T R A C T

This article presents a comprehensive exploration of the architecture and various approaches in the domain of
cloud computing and software-defined networks. The salient points addressed in this article encompass: Foun
dational Concepts: An overview of the foundational concepts and technologies of cloud computing, including
software-defined cloud computing. Algorithm Evaluation: An introduction and evaluation of various algorithms
aimed at enhancing network performance. These algorithms include Intelligent Rule-Based Metaheuristic Task
Scheduling (IRMTS), reinforcement learning algorithms, task scheduling algorithms, and Priority-aware Semi-
Greedy (PSG). Each of these algorithms contributes uniquely to optimizing Quality of Service (QoS) and data
center efficiency. Resource Optimization: An introduction and examination of cloud network resource optimiza
tion based on presented results and practical experiments, including a comparison of the performance of different
algorithms and approaches. Future Challenges: An investigation and presentation of challenges and future sce
narios in the realm of cloud computing and software-defined networks. In conclusion, by introducing and
analyzing simulators like Mininet and CloudSim, the article guides the reader in choosing the most suitable
simulation tool for their project. Through its comprehensive analysis of the architecture, methodologies, and
prevalent algorithms in cloud computing and software-defined networking, this article aids the reader in
achieving a deeper understanding of the domain. Additionally, by presenting the findings and results of con
ducted research, it facilitates the discovery of the most effective and practical solutions for optimizing cloud
network resources.

Introduction

Cloud computing encompasses a diverse range of resources,
including physical servers, networks, storage, and applications, allowing
users to access these resources through networking for their service
needs [1]. By renting services from cloud providers for specific dura
tions, users can avoid the high costs associated with purchasing hard
ware and software [2]. Cloud service providers offer three distinct
models: Infrastructure as a Service (IaaS), Platform as a Service (PaaS),
and Software as a Service (SaaS), each tailored to meet varying user
requirements [3]. The IaaS model allows users to leverage computa
tional resources such as processing capabilities, storage, and networking
elements without directly overseeing the underlying cloud infrastruc
ture. However, users retain control over the operating system and
hardware resources, providing a degree of flexibility in their operations
[4]. Currently, there is a remarkable surge in the adoption of cloud
services, necessitating the enhancement of network infrastructures to

meet contemporary demands. Traditional networks, which rely on
routers and switches for decision-making, are structured vertically [5].
In these configurations, both the control layer, responsible for traffic
management decisions, and the data layer, which forwards traffic based
on those decisions, are integrated within individual network devices [6].
Such conventional networks struggle to efficiently manage vast data
volumes, particularly in scenarios involving virtual machines, migra
tion, and network setup [4]. To address these challenges, there is a
pressing need for networks that are efficient, adaptable, swift, and
scalable [7]. Software-Defined Networking (SDN) emerges as a novel
paradigm designed to overcome the limitations of traditional networks
by decoupling control from network devices and establishing centralized
oversight [4]. This shift allows for a comprehensive and flexible view of
the network, enabling streamlined and unified management. Conse
quently, SDN significantly enhances network efficiency while reducing
both the costs associated with high-end equipment and the human re
sources required for network administration [8]. This paper aims to

* Corresponding author.
E-mail addresses: m.mehdizadeh@eng.ui.ac.ir (M. Mahdizadeh), a.montazerolghaem@comp.ui.ac.ir (A. Montazerolghaem), jamshidi@eng.ui.ac.ir (K. Jamshidi).

Contents lists available at ScienceDirect

Journal of Engineering Research

journal homepage: www.journals.elsevier.com/journal-of-engineering-research

https://doi.org/10.1016/j.jer.2024.11.002
Received 25 June 2024; Received in revised form 15 October 2024; Accepted 3 November 2024

Journal of Engineering Research xxx (xxxx) xxx

Available online 9 November 2024
2307-1877/© 2024 The Author(s). Published by Elsevier B.V. on behalf of Kuwait University. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Please cite this article as: Masoumeh Mahdizadeh et al., Journal of Engineering Research, https://doi.org/10.1016/j.jer.2024.11.002

mailto:m.mehdizadeh@eng.ui.ac.ir
mailto:a.montazerolghaem@comp.ui.ac.ir
mailto:jamshidi@eng.ui.ac.ir
www.sciencedirect.com/science/journal/23071877
https://www.journals.elsevier.com/journal-of-engineering-research
https://doi.org/10.1016/j.jer.2024.11.002
https://doi.org/10.1016/j.jer.2024.11.002
http://creativecommons.org/licenses/by/4.0/

explore these motivations further, focusing on the architectural ad
vancements and methodologies in both cloud computing and SDNs, ul
timately providing insights into optimizing network performance and
resource management.

Fig. (1) illustrates the Software-Defined Cloud Computing (SDCC)
architecture to enhance understanding [9]. As shown in the diagram, the
controller component is distinct from the switching devices and plays a
centralized role in monitoring and managing the network. Within this
architecture, transmission devices focus exclusively on routing packets
between input and output ports. In this advanced cloud system, both the
controller and transmission devices are interconnected via a communi
cation protocol SDN technology transfers network control from the
switching devices, which traditionally manage network routing, to for
warding devices [10]. This separation enables the expansion of network
infrastructure by deploying only forwarding devices that are managed
by a central controller. The SDN system oversees the network through
this central controller, which collects a comprehensive overview of the
network from the forwarding devices, selects the optimal
decision-making strategy based on this information, and implements it
on the forwarding devices via the southbound interface [7].

Fig. (2) presents an overview of the SDN architecture. This frame
work is structured into three tiers: the Data Plane, Control Plane, and
Application Plane, arranged sequentially. The foundational layer, the
Data Plane, consists of transmission devices that lack intrinsic control or
decision-making software, connecting to establish a network [11]. The
Control Plane stands out as the pivotal component in SDN architecture.
It operates based on two fundamental principles: 1) Network Moni
toring, which gathers a network’s comprehensive view from the Data
Plane and forwards it to the Application Plane. 2) Network Control,
which entails transmitting policies set by the Application Plane to the

transmission devices. This ensures network awareness and facilitates
optimal decision-making. Positioned above the Control Plane, the
Application Plane accesses a holistic, real-time network overview via the
Control Plane. Leveraging this data, the Application Plane can enforce
and adapt policies to manage the network effectively [8]. SDCC is
characterized as an approach to cloud service development where
software handles the management and oversight of various resources
like computing, storage, data centers, and security [12]. Fig. (3) illus
trates the integration of SDN technology into cloud computing. It
showcases the interplay between the SDN controller and the cloud
controller, along with the connections between controllers and network
equipment, encompassing transmission devices, conventional network
switches, storage resources, and processing units [13].

Cloud computing faces numerous challenges that researchers are
actively working to address. One of the most significant challenges is
load balancing and task scheduling [14]. Inefficient resource allocation
can result in either over-provisioning or under-provisioning, adversely
affecting Service Level Agreements (SLAs) and diminishing profits for
cloud providers, while simultaneously increasing costs for users [12].
Consequently, it is crucial to allocate requests to suitable resources to
enhance Quality of Service (QoS). A primary objective of task scheduling
algorithms is to achieve effective load balancing. Load balancing in
volves distributing workloads across multiple distributed servers,
thereby maximizing resource utilization [15,16]. The main aim of task
allocation in a balanced load scenario is to optimize the distribution of
tasks among available resources and minimize response times [17].

Scope and contribution

Recently, various methods, techniques, and algorithms have been

Fig. 1. Cloud computing architecture based on software-defined network.

M. Mahdizadeh et al. Journal of Engineering Research xxx (xxxx) xxx

2

implemented with a focus on SDN-based cloud computing in resource
management, resource scheduling, resource allocation, energy preser
vation, load balancing, and QoS. The objective of this paper is to provide
a comprehensive review and thorough examination of techniques,
frameworks, and models for resource scheduling and load balancing for
cloud computing and SDN-based cloud computing. Our contributions
can be summarized as follows:

• We have examined review articles that have collected research in the
field of service quality in cloud computing and SDN-based cloud
computing.

• We have categorized recent trends in resource scheduling mechani
zation and load balancing, while simultaneously gathering their
advantages and disadvantages.

• We have investigated prominent simulators for testing new
mechanizations.

• We elucidate potential research endeavors previously outlined, aid
ing in identifying pathways for current and future utilization.

Organization

The following paragraphs shall be arranged as follows. Reviewing
survey articles that have gathered research on service quality in cloud
computing and SDN-based cloud computing, and finally, discussing the
advantages and disadvantages of each in Section 2. Section 3 examines
the latest research on task scheduling and load balancing in cloud en
vironments, concluding with a comparison of the articles. Section 4 fo
cuses on the newest research on task scheduling and load balancing in

SDN-based cloud environments. Section 5 evaluates prominent simula
tors used, providing separate descriptions for each. Open issues and
recommendations for future research are discussed in Section 6,
concluding the article in Section 7.

Comparison of review articles

Arwa Mohamed et al. [4] conducted a comprehensive review of
resource allocation in cloud computing using SDN. The paper explores
the enhancement of resource allocation and the dynamic updating of
virtual machine traffic demands through SDN, addressing the associated
challenges and opportunities. It emphasizes the need for solutions to
improve the performance and efficiency of cloud computations. The
article provides a detailed comparison of resource allocation in cloud
computing with SDN, examines various challenges in the field, high
lights the timeliness and novelty of the topics discussed, and contrasts its
findings with those of other publications. As a result, this paper gener
ally offers a relative advantage over other articles in this area.

Wenfeng Xia et al. [8] present a comprehensive review of SDN,
examining its features, advantages, and disadvantages. The paper con
trasts SDN with traditional networking approaches, highlights the ben
efits and challenges of SDN in the face of evolving communication and
information technology trends, and delves into the three-layer archi
tecture of SDN. The findings indicate that SDN can enhance network
reliability, security, and scalability. Additionally, the paper mentions
aspects such as resource management in mobile radio networks and
wireless access.

Abbasi et al. [12] provided a comprehensive review of trends and

Fig. 2. SDN architecture.

Fig. 3. Software-defined network integration in cloud computing.

M. Mahdizadeh et al. Journal of Engineering Research xxx (xxxx) xxx

3

developments in Software-Defined Cloud Computing (SDCC). The paper
introduces the concepts of cloud computing and SDCC, examining the
architectural components of SDCC in detail. It discusses the advance
ments and challenges associated with SDCC, along with proposed solu
tions to these challenges. Additionally, the paper compares the practical
applications and potential of SDCC across various industries, concluding
that the utilization of SDCC can significantly enhance performance, ef
ficiency, security, and flexibility within cloud computing.

Kamlesh Lakhwani et al. [10] conducted an extensive review of data
authentication methods in cloud computing. They analyze the key ad
vantages of cloud computing, the security challenges related to data
authentication, and strategies to bolster data security in this environ
ment. The review covers a range of topics, including the integration of
various tools and techniques for user authentication, the introduction of
a factor-based access control model, and the enhancement of trust and
reliability in cloud computing settings. This paper distinguishes itself
from other studies in the field by thoroughly investigating the benefits
and security challenges of data authentication and exploring methods to
enhance data security, thereby contributing significantly to improving
data protection in cloud environments.

Samah Alnajdi et al. [18] delve into a comprehensive examination of
resource allocation techniques in cloud environments. This review en
compasses challenges, optimization solutions, various resource alloca
tion models, the advantages and disadvantages of each model and
solution, as well as future research directions. The paper conducts a
comparative analysis of various models and solutions, delineating their
strategies and presenting a comparative table that accentuates the
strengths and weaknesses of each option. The results indicate that
resource allocation in the cloud still poses challenges and issues that
require further research and optimal solutions. The paper’s primary
strength lies in its thorough examination of various models and solu
tions, presenting a comparative table, and outlining challenges and
future recommendations. Overall, it is recommended as a valuable
resource for comprehending the challenges and solutions associated
with resource allocation in cloud environments.

Nasrin Akhter et al. [19] investigated the challenges and solutions
related to energy resource management in cloud environments. The
paper addresses the growing demand for cloud computing, the associ
ated high electricity consumption, energy-aware architectures, and
resource allocation techniques, while also highlighting future challenges
and potential solutions. It explores a range of topics and offers a thor
ough comparison of different approaches and solutions. Key findings
emphasize the environmental impacts and high operational costs of data
centers, the critical need for efficient power management, and the role of
renewable energy resources. The paper also discusses future challenges
such as workload migration and cooling system optimization. With its
broad scope, introduction of innovative solutions, presentation of
empirical findings, and practical project examples, this paper serves as a
valuable resource for future research and practical implementations in
the field.

Abdul Hameed et al. [20] conducted a review focusing on
energy-efficient resource allocation in cloud computing environments.
The paper examines concepts such as power management policies,
various architectures, and the impact of workload on energy savings.
The findings indicate that energy-efficient resource allocation in cloud
computing environments presents a significant challenge, requiring
detailed examination of the effects of different workloads and the pro
vision of solutions for power management and enhanced energy effi
ciency. The study tackles challenges such as delineating suitable metrics
for assessing energy consumption and identifying appropriate methods
for achieving energy-efficient resource allocation. Furthermore, the
paper sheds light on the advancement of novel approaches for power
management and reducing energy consumption in forthcoming
endeavors.

Given the complexity of this challenge, the paper emphasizes the
importance of establishing proper policies for power management and

boosting energy efficiency, underscoring the need for innovative ap
proaches in this field. The importance percentage of SDN in the
reviewed articles is shown in Fig. 4.

This section provides a comprehensive comparison of various articles
in the field of resource management in cloud environments. Each paper
is scrutinized in detail, covering features, advantages, challenges, and
proposed solutions. Key findings include recommendations for
improving performance and efficiency in cloud environments, the role of
emerging technologies such as SDN and SDCC in resource management
enhancement, and issues related to energy consumption and data se
curity in these environments. Below is a summary of the articles along
with their advantages and disadvantages (Table 1).

Task scheduling and load balancing in cloud computing

Task scheduling in cloud computing

Behera et al. [9] delve into optimizing task scheduling in cloud
computing environments using heuristic and metaheuristic algorithms,
emphasizing the hybrid GA-GWO algorithm. The Grey Wolf Optimizer
(GWO) algorithm is inspired by the behavior of grey wolves and is
employed for optimization problem-solving. The GA-GWO algorithm
combines the features of the Genetic Algorithm (GA) and GWO to
optimize task scheduling in cloud computing environments. Simulation
results indicate that this proposed algorithm significantly improves
execution time reduction, energy consumption, and overall cost
compared to GWO, GA, and PSO algorithms. This research demonstrates
that combining genetic and GWO algorithms can enhance task sched
uling efficiency in cloud computing environments.

Xiaohan Wang and his colleagues [21] conducted a novel study on
task scheduling within collaborative production and computational
systems in edge-cloud environments. They introduced the FCRN-assisted
random differential evolution approach to enhance scheduling effi
ciency. This method integrates the differential evolution technique with
Feed-forward Convolutional Recurrent Networks (FCRN) to optimize
task scheduling processes. The paper evaluates the proposed method,
demonstrating its effectiveness in improving efficiency for hybrid task
scheduling problems in manufacturing and production systems. When
compared to other algorithms and alternative models, the F-RDE
method utilizing the FCRN model outperformed its counterparts. The
evaluations indicate that this approach is particularly effective in tack
ling hybrid task scheduling challenges, offering superior accuracy and
shorter solution times.

Huayi Yin and colleagues [22] present significant enhancements in
optimizing the performance of production lines. They employ heuristic
methods like Particle Swarm Optimization (PSO) and Gravitational

Fig. 4. Distribution of SDN importance in articles.

M. Mahdizadeh et al. Journal of Engineering Research xxx (xxxx) xxx

4

Search Algorithm (GSA) to develop a combined heuristic approach that
reduces the delay of all tasks and diminishes node energy consumption.
This optimization method addresses task scheduling issues in cloud-edge
computing environments. Using various heuristic techniques, including
PSO and GSA, task scheduling problems in intelligent production lines
are resolved. Simulation results indicate that the proposed method
outperforms other methods like IMBO and IACO in terms of service
delay, energy consumption, and task completion rate. This paper in
troduces a novel approach aimed at enhancing task scheduling in
intelligent production lines, resulting in expedited responses and
decreased energy consumption.

R. Nithiavathy and colleagues [23] focus on optimization methods
for task scheduling in cloud computing environments. The paper in
troduces a novel algorithm named AGDESMA,1 which combines the
Slime Mould Algorithm with Adaptive Guided Differential Evolution to
enhance task scheduling performance. AGDESMA leverages both
exploitative and explorative capabilities to prevent getting stuck in local
areas, demonstrating significant improvements in average response time
and resource utilization rate. Experimental results indicate that
AGDESMA outperforms comparative algorithms such as PPSO-DA,2

MMHHO,3 PSO-RDAL,4 and LBPSGORA.5 This algorithm delivers sig
nificant improvements in response time and resource utilization rate,
serving as an innovative approach to optimize task scheduling within
cloud computing environments.

Hadi Zavieh and colleagues [24] explored the Artificial Neural
Network Dynamic Balancing (ANNDB) method to improve task sched
uling and optimize resource allocation in cloud networks. This approach
utilizes advanced network architecture and a Multi-Layer Perceptron
(MLP) to assign requests to high-capacity and high-quality virtual ma
chines, thereby facilitating energy consumption optimization. Evalua
tions demonstrated that ANNDB significantly outperforms comparative
methods such as WPEG, IRMBBC, and BEMEC in terms of energy con
sumption and power efficiency. Specifically, ANNDB achieved en
hancements of 13.81 %, 8.62 %, and 9.74 % in the energy metric, as
well as improvements of 3.93 %, 4.84 %, and 4.19 % in the power

metric over these comparative methods. ANNDB not only optimizes
cloud computing environments by reducing energy consumption but
also enhances task scheduling performance, potentially leading to
operational cost savings and environmental benefits. This research
highlights ANNDB as an effective and efficient method that can assist
organizations in further optimizing their cloud computing infrastruc
ture, thereby contributing to environmental sustainability.

S.M.F D Syed Mustapha et al. [25] explored the utilization of
DBSCAN6 and min-min algorithms to enhance efficiency and resource
utilization in cloud environments. The paper delves into data clustering
and task scheduling with consideration to error probability. Evaluation
results indicate that the proposed algorithm leads to a 25 % improve
ment in execution time, a 6.5 % increase in the number of completed
tasks, and a 3.48 % rise in the number of failed tasks compared to
comparative algorithms. These findings indicate that the proposed al
gorithm has the potential to significantly improve the performance and
efficiency of data centers within cloud environments, thereby lowering
the probability of errors, which in turn can contribute to enhancing the
QoS in the cloud.

Cebrail Barut and his team [26] introduced a method named Intel
ligent Rule-Based Metaheuristic Task Scheduling (IRMTS), which con
sists of two primary phases. Initially, suitable solutions are extracted
using metaheuristic algorithms based on various scenarios, and the
gathered data is utilized to construct a dataset and derive intelligent,
interpretable rules. In the second phase, appropriate task scheduling
solutions are determined using the established set of rules. The IRMTS
approach possesses innovative features, and its performance has been
validated across simulation environments with diverse scenarios. This
method harnesses rule-based metaheuristic algorithms to provide rapid
solutions for immediate resource and user demands. Moreover, it for
mulates rules that are easily comprehensible for operators and engi
neers, making it adaptable to various dynamic challenges.

Sondas Oufkir and his team [27] introduced a novel method named
HunterPlus. This method enhances a Gated Graph Convolutional
Network (GGCN) scheduler by integrating a new Convolutional Neural
Network (CNN) scheduler. The approach evaluates the QoS parameters
for various hosts and tasks, then decides on the best combination of hosts
and tasks to optimize the specified QoS parameter. This innovative
approach swiftly adjusts to dynamic environments by continuously
updating the neural model during each iteration, successfully circum
venting scalability challenges in extensive experimental trials. The

Table 1
Summary of reviewed articles.

Year Ref. Topic Method Findings Advantages

2014 [20] Energy-Efficient Resource
Allocation in Cloud
Environments

Review of advantages and disadvantages of
energy-efficient resource allocation in
cloud environments

Review of advantages and disadvantages
of energy-efficient resource allocation in
cloud environments

Presents a comprehensive taxonomy
and comparison of different methods

2015 [8] A Comprehensive Survey of
SDN

Features, advantages, and disadvantages of
SDN - 3-tier architecture

SDN is capable of improving QoS in the
network

Comprehensive coverage and
overview of the topic of SDN

2016 [18] Dynamic Resource Allocation
in Cloud Environment

Comprehensive review of dynamic
resource allocation techniques in cloud
environment

Discusses the challenges and issues of
resource allocation in cloud
environments

Presents various models and
solutions for resource allocation

[19] Energy Resource
Management in Cloud
Environments

Review of challenges and solutions for
energy resource management in data
centers

Discusses the negative environmental
impacts and high operational costs of
data centers

Introduces innovative solutions and
presents experimental results

2018 [10] Authentication in Cloud
Environments

Comprehensive review of data
authentication methods in cloud
computing

Discusses the security advantages and
challenges of authentication in cloud
computing

Provides a comprehensive review
and comparison of different
authentication methods

2019 [12] A Comprehensive Review of
SDCC Trends and
Developments

Concepts of cloud computing and SDCC -
SDCC architecture elements - SDCC
developments and challenges

Using SDCC can help improve QoS in
cloud computing

Presents the fundamentals and
important principles in SDCC
development

2021 [4] Resource Allocation in Cloud
Computing using SDN

A survey of resource allocation in cloud
computing using SDN

SDN can improve QoS in the network Provides a comprehensive
comparative analysis of resource
allocation using SDN

1 Adaptive Guided Differential Evolution-based Slime Mould Algorithm
(AGDESMA)

2 Phasor PSO and Dragonfly Algorithm (PPSO-DA)
3 Mantaray Modified multi-objective Harris Hawk Optimization (MMHHO).
4 PSO-based Resource and Deadline-Aware dynamic Load-balanced (PSO-

RDAL)
5 LB with Particle Swarm Genetic Optimization algorithm to improve

Resource Allocation (LBPSGORA) 6 Density-Based Spatial Clustering of Applications with Noise (DBSCAN)

M. Mahdizadeh et al. Journal of Engineering Research xxx (xxxx) xxx

5

findings consistently demonstrate the superior performance of the pro
posed CNN model over both GGCN and BiGGCN7 schedulers, show
casing improvements in energy consumption per request and job
completion rate by a minimum of 17 % and 10.4 %, respectively.
However, the study does not specifically address load balancing.

Sadoon Azizi and his team [28] introduced two semi-greedy algo
rithms: The Priority-aware Semi-Greedy (PSG) and the Priority-aware
Semi-Greedy with Multi-Start (PSG-M), designed for task scheduling
on Fog Nodes (FNs) with the objective of minimizing energy consump
tion in fog nodes. The PSG algorithm prioritizes requests based on their
priority and allocates them to servers with minimal response times to
curtail energy usage in the fog environment while adhering to deadlines.
However, if an appropriate resource isn’t identified, the algorithm aims
to minimize the violation time by assigning the best available resource.
The Priority-aware Semi-Greedy with Multi-Start algorithm continually
runs the Priority-aware Semi-Greedy algorithm, producing the optimal
solution discovered across all iterations. Each iteration stands alone,
resulting in a distinct solution. These newly proposed algorithms were
benchmarked against First Come First Served (FCFS), Earliest Deadline
First (EDF), Detour, and Greedy for Energy (GfE) algorithms. The
assessment revealed that the introduced method enhances the percent
age of tasks meeting their deadlines by up to 1.35 times and diminishes
the total deadline violation time by up to 97.6 % compared to the Detour
algorithm. Nevertheless, it doesn’t account for load balancing. Addi
tionally, as the number of tasks increases, the EDF algorithm demon
strates superior performance over the proposed method in terms of
energy consumption and makespan. The distribution of importance in
the scheduling of cloud computing tasks in the reviewed articles is given
in Fig. 5. Here’s a recap of the articles along with their strengths and
weaknesses (Table 2).

Task scheduling for load balancing in cloud computing

Khaleel and his colleagues [29] introduced the Regional Awareness
Dynamic Scheduling Algorithm (RASA) tailored for load balancing
within cloud computing environments. This algorithm operates through
a three-phase strategy: task classification, server classification, and an
approach based on coalition games. Additionally, the Sparrow Search
Algorithm (SSA) is incorporated to optimize task placement. The algo
rithm successfully minimized additional costs associated with delay,
processing time, load imbalances, energy usage, and idle intervals. The
study also delves into the complexities of load balancing in cloud setups,
highlighting the significance of workload distribution, task scheduling,

and the selection of suitable processing servers. By employing game
theory techniques and swarm intelligence optimization methods, the
algorithm achieves superior load balancing. RASA not only addresses
the constraints of previous literature on task-to-VM assignments but also
introduces various optimization techniques to boost resource utilization
and load balancing. In conclusion, the paper introduces the RASA al
gorithm, demonstrating its ability to significantly reduce additional
costs associated with delay, load imbalances, and energy consumption,
while simultaneously improving resource utilization and system
performance.

Simaiya et al. [30] introduce a hybrid model named DPSO-GA (Deep
learning with PSO-GA) designed for dynamic load balancing within
cloud environments. This model integrates deep CNNs and long
short-term memory (LSTM) networks with PSO-GA optimization tech
niques to forecast resource consumption and facilitate load balancing.
Through simulations, the proposed model is shown to decrease energy
usage in cloud data centers and surpass the performance of current
methods. This study presents a novel approach that combines deep
learning with optimization strategies for workload prediction and cloud
load balancing. Such a method holds promise for enhancing resource
efficiency and reducing energy consumption in cloud environments.

Ebadifard et al. [31] improved the PSO algorithm by introducing a
novel load balancing technique. In this approach method, every request
is first allocated to a virtual machine at random. Subsequently, the
virtual machines are categorized as underloaded, overloaded, or
balanced. If a machine is identified as overloaded, its requests get shifted
to an underloaded counterpart. During this phase, the most compatible
machine with the request is chosen, and this procedure persists until no
underloaded machines remain. Furthermore, this approach aims to
minimize makespan, thereby optimizing resource utilization. While the
conventional PSO algorithm assigns tasks to virtual machines randomly,
the strength of this new method lies in the additional load balancing step
implemented after random task assignment. When juxtaposed with the
Round Robin task scheduling, the foundational PSO algorithm, and a
stand-alone load balancing technique, the findings revealed that this
novel method augmented resource utilization by 22 % and curtailed
makespan by 33 % compared to the fundamental PSO algorithm.

Kruekaew et al. [16] introduced a technique called MOABCQ, which
combines the Artificial Bee Colony (ABC) algorithm with the Q-learning
algorithm, a type of reinforcement learning. The primary goal of this
hybrid approach is to enhance the exploitative capabilities of the ABC
algorithm. Initially, a request is randomly assigned to a virtual machine,
while the search for an optimal machine continues. If a superior machine
is found that outperforms the current one, requests are redirected to this
machine. In this case, the superior machine is rewarded, while the
incumbent machine incurs a penalty, leading to an update of the Q-table.
Conversely, if the new machine does not exceed the performance of the
current one, it receives a penalty, and the existing machine is rewarded,
prompting another Q-table update. This Q-table is also crucial for
assigning new requests. To evaluate the effectiveness of this method, it
was compared against well-known heuristic task scheduling techniques,
including the Max-Min algorithm, First-Come First-Served (FCFS) algo
rithm, and Largest Job First (LJF) algorithm. Additionally, it was
benchmarked against meta-heuristic task scheduling methods such as
the Multi-Objective Particle Swarm Optimization (MOPSO) algorithm,
Multi-Objective Cuckoo Search (MOCS) algorithm, and the authors’
earlier approach known as Heuristic Task Scheduling with ABC and
Largest Job First (HABC-LJF) algorithm. The results indicate that
MOABCQ surpasses the other methods in terms of makespan, cost
reduction, minimization of imbalance degree, and resource utilization.

Ramezani Shahidani and her colleagues [32] introduce a task
scheduling algorithm for fog computing named Reinforcement Learning
Fog Scheduling (RLFS), which is grounded in reinforcement learning.
The algorithm’s primary objectives are to equalize the load, diminish the
average response time, and curtail energy consumption. Requests are
categorized into three groups: real-time, significant, and regular.

Fig. 5. Distribution of Importance in cloud computing task scheduling.

7 Bidirectional Gated Graph Convolution Network (BiGGCN)

M. Mahdizadeh et al. Journal of Engineering Research xxx (xxxx) xxx

6

Regular requests are directed to the cloud because they aren’t sensitive
to delays. In contrast, real-time and significant requests are primarily
handled at fog nodes due to their sensitivity to delays. Reinforcement
learning governs the scheduling of these priority requests. The rein
forcement learning approach in the proposed algorithm operates in two
stages. Initially, it aims to handle all real-time and significant requests at
the fog nodes. If a chosen fog node cannot meet the request, an alter
native node is chosen from the available fog nodes capable of addressing
the request using a greedy policy. Subsequently, the action’s reward is
computed, and the Q-table undergoes an update. Comparative analysis
with LBSSA, DRAM, GA, and PSO-SA algorithms reveals that the pro
posed RLFS method surpasses others in terms of load balancing and
average response time. Nonetheless, factors such as Q-table updates,
action selection, and the inherent overhead of reinforcement learning
contribute to the algorithm’s suboptimal performance regarding
execution time.

Fatemeh Abbasifard et al. [17] present an efficient method for dy
namic request scheduling on virtual machines (VMs) designed to
enhance load balancing in cloud data centers. This approach combines
an autonomous VM adjustment framework with a predictive component
to forecast future system states. The process includes: assessing the
available resources in each VM (such as processing power, memory, and
bandwidth), evaluating the compatibility between each request’s re
quirements and the available VMs, and selecting the VM that best
matches the request’s needs based on the required resources.

Through integration of prediction, the method avoids selecting VMs
that may become overloaded in the future, thereby reducing the over
head associated with relocating requests from overloaded VMs to others.

Moreover, the autonomous architecture enables VMs to adapt auto
matically to environmental changes, avoiding excessive requests that
can lead to overhead and minimizing the need for load balancing al
gorithms. Simulation results demonstrate that the proposed approach
effectively achieves load balancing among VMs, allocates requests to
appropriate VMs based on their resource requirements, and reduces both
response time and makespan.

Ali Asghari and his colleagues [33] present an innovative approach
to cloud resource management that integrates the
State-Action-Reward-State-Action (SARSA) learning algorithm with a
Genetic Algorithm (GA). Both Q-learning and SARSA are forms of
Reinforcement Learning (RL) techniques, with SARSA being preferred
due to its superior performance. The fundamental difference between
these algorithms lies in their policy update mechanisms: Q-learning
updates policies in a greedy manner, while SARSA utilizes its learned
policy for updates. The proposed methodology consists of two stages:
Stage 1: In this stage, requests are evaluated using the SARSA RL model,
resulting in a sorted list of jobs based on increasing execution time,
which is then forwarded to the next stage. Stage 2: Here, jobs are
assigned to appropriate resources through a combination of GA and RL.
Experimental results demonstrate that the proposed algorithm, when
compared to the Multi-Objective HEFT (MOHEFT) and Min-Cost Path
(MCP) algorithms, achieves a decreased makespan, enhanced resource
utilization, and improved load balancing.

Ashish Gupta et al. [34] introduce an innovative method for sched
uling independent tasks within the cloud, employing an Ant Colony
Optimization (ACO) algorithm termed Load Balancing Ant Colony
Optimization (LB-ACO) algorithm. The primary aim of this algorithm is

Table 2
Task Scheduling in Cloud Computing.

Year Ref. Authors Proposed Algorithm Improvement Parameters Advantages Disadvantages

2022 [28] Azizi et al. PSG and PSG-M Improved scheduling of IoT tasks,
reduced overall energy
consumption, increased profitability
of fog service providers

Accurately evaluate the
performance of algorithms,
meeting the deadline
requirements for a large number
of IoT tasks

Capacity and management
limitations of fog resources, high
energy consumption, complexity in
allocating diverse and dynamic
resources to IoT tasks

2024 [9] Behera et al. hybrid GA-GWO Improve execution time, energy
consumption and cost

Reduces execution time, energy
consumption, and total cost
scheduling

Requires complex configuration and
tuning

[21] Xiaohan
Wang et al.

fully convolutional
regression network
(FCRN)

Using FCRN model to estimate
fitness function, using four DE
operators to generate offspring,
combining several methods to
improve performance

Superior performance in solving
hybrid task scheduling problems

More calculations are needed to
train the FCRN model

[22] Huayi Yin
et al.

Multi-PSG Service delay, energy consumption,
task completion rate

Improves performance over other
methods, reduces energy
consumption, increases task
completion rate

Requires more computation for
executing heuristic algorithms

[23] R.
Nithiavathy
et al.

AGDESMA (Adaptive
Guided Differential
Evolution-based Slime
Mould Algorithm)

Using a combination of Slime Mold
Algorithm and Adaptive Guided
Differential Evolution, heuristic and
discovery capability to avoid getting
stuck in local areas

High performance in task
scheduling, better results than
comparative algorithms,
improved response time and
resource utilization rate

The need to adjust the parameters of
the algorithm, the need for a
suitable test environment to
evaluate the performance

[24] Zavieh et al. ANNDB Improves energy and power
consumption, optimizes task
scheduling, utilizes MLP and
advanced network architecture

Increasing the efficiency of
energy and power, improving the
scheduling of tasks, the
possibility of optimizing cloud
computing environments

Requires more complex
computation for algorithm
execution, requires specialized
knowledge for correct
implementation

[25] Syed
Mustapha
et al.

DBSCAN and min-min Execution time, number of
completed tasks, number of failed
tasks

25 % improvement in execution
time, 6.5 % increase in the
number of completed tasks,
3.48 % increase in the number of
failed tasks

-

[26] Cebrail Barut
et al.

Intelligent Rule-Based
Metaheuristic Task
Scheduling (IRMTS)

Reduces execution time, applicable
in dynamic scenarios, generates
interpretable rules

Increased complexity in
parameter tuning, may lead to
suboptimal solutions

​

[27] Iftikhar et al. HunterPlus: AI-based job
scheduling for fog-cloud
computing
environments

Resource scheduling and
optimization in fog-cloud computing

Optimizes resource management,
improves energy efficiency in fog-
cloud environments

Complexity in implementing AI
algorithms, increases computational
cost

M. Mahdizadeh et al. Journal of Engineering Research xxx (xxxx) xxx

7

to optimize load balancing and reduce the makespan. In this strategy,
initial task assignments are randomized. Subsequently, the maximum
execution time is determined, and further task allocations are conducted
using the LB-ACO algorithm based on this computation. The algorithm
leverages pheromones and random exploration to identify the optimal
VM for each task. A comparative study reveals that the LB-ACO algo
rithm surpasses existing methods in terms of both load balancing and
makespan. However, it’s important to note that the algorithm doesn’t
take task priorities into account.

Wang and colleagues [35] present a novel scheduling algorithm
called the Job and Load Balancing Genetic Algorithm (JLGA) tailored for
cloud computing environments. This algorithm is based on an enhanced
Adaptive Genetic Algorithm (AGA) and integrates the dual-time-scale
adaptive algorithm with the Load-Balancing Genetic Algorithm
(LBGA). JLGA facilitates job scheduling by prioritizing smaller requests
while also incorporating load balancing considerations. The initial
population is generated using a greedy algorithm. It is important to note
that this study assumes equal job priorities, which may not reflect the
complexities of real-world cloud computing scenarios. The advantages
of JLGA include enhanced performance compared to existing algo
rithms, reduced response times, improved load balancing capabilities,
and optimized resource utilization.

Lahande et al. [36] explore the potential of Reinforcement Learning
(RL) techniques in enhancing cloud resource utilization through load
balancing. Through experiments using the SIPHT dataset, they illustrate
that resource scheduling algorithms can notably boost load balancing
and overall cloud resource efficiency. Their findings indicate that
scheduling methods like First Come, First Serve (FCFS), Maximum –
Minimum (Max – Min), Minimum Completion Time (MCT), Minimum –
Minimum (Min – Min), and Round – Robin (RR) yield substantial en
hancements in this domain. The study posits that integrating an
RL-driven artificial intelligence framework into load balancing and
optimizing cloud resources can markedly elevate the quality of service
offered by cloud platforms. The research underscores that the applica
tion of RL approaches can enhance both the performance and efficiency
of cloud resources, presenting an intelligent remedy for load balancing
challenges in cloud environments. The estimated importance of QoS
aspects in the reviewed articles is given in Fig. 6.

In this section, we have introduced various methods and algorithms
designed to optimize task scheduling and load balancing within cloud
computing environments. These methods encompass hybrid algorithmic
optimizations and reinforcement learning techniques. The primary ob
jectives of these approaches are to enhance resource efficiency, mini
mize energy consumption, and ensure equitable load distribution among
resources, all while striving to improve overall system performance and

efficiency. Below is a summary of the articles, highlighting their
strengths and weaknesses (Table 3).

Task scheduling and load balancing in software-defined cloud
computing network

Load balancing in software-defined cloud computing network

Çavdar et al. [37] introduce an adaptive load distribution technique
designed for data centers operating on SDN. This approach employs a
meta-heuristic method known as discrete particle swarm optimization
and enhances load distribution across links and switches using a unique
combined cost function. The primary goal is to identify routes that
minimize connection loads and evenly distribute traffic between the best
sources and destinations, thereby reducing strain on both links and
switches. The adaptable characteristic of this technique ensures that the
most efficient routes are consistently refreshed for peak operational ef
ficiency. Simulated outcomes demonstrate that this approach results in:
Decreased flow completion durations, Elimination of packet loss,
Diminished energy usage, Lower memory consumption, Enhanced
network throughput. Furthermore, this method surpasses current
state-of-the-art techniques, demonstrating its potential to significantly
enhance load distribution within SDN-enabled networks.

Yaofang et al. [38] explored the Proximal Policy Optimization (PPO)
technique for resource allocation in edge computing networks. This
approach frames energy consumption optimization and network load
balancing as a multi-objective challenge. Findings indicate that PPO
minimizes energy use while achieving balanced network loads in edge
computing environments. The algorithm notably enhances network ef
ficiency and ensures consistent training stability. Consequently, PPO is
identified as a potent strategy for optimizing resources and elevating
performance in edge computing networks. The study delves into the
Markov decision-making process, representing the issue as an MDP, and
underscores the efficacy of PPO in tackling intricate challenges.

Song et al. [39] present the Mixed-Flow Load-Balanced Scheduling
(MFLBS) algorithm, specifically designed for software-defined cloud
data center networks. This algorithm aims to improve network effi
ciency and performance by addressing the needs of both cloud and
Internet of Things (IoT) networks. MFLBS adapts the distribution of
network load according to the distinct characteristics and sizes of data
flows, ensuring an equitable balance between smaller and larger flows.
By utilizing both preventive and dynamic traffic control strategies, the
algorithm optimizes bandwidth resource allocation and routing in
response to varying network conditions. Experimental results indicate
that MFLBS outperforms other algorithms, including dynamic ap
proaches like DLBS and static ones like First-Come, First-Served (FCFS),
leading to reduced delays and enhanced data throughput. This algo
rithm offers significant improvements in the performance of cloud data
center networks and demonstrates considerable practical value.

Pathan et al. [40] explored the merging of data center networks with
SDN to improve network management and adaptability. As the number
of network devices in these centers grows, effectively managing the vast
data from these devices becomes crucial. This study introduces a fresh
approach for admission and routing that takes into account the signifi
cance or priorities of network flows, path energy, and path load. By
applying the SDN framework to data center networks, they initially
devise a mixed integer linear programming (MILP) model that considers
flow priority, path energy, and path load concurrently. This MILP model
aims to enhance flow count while reducing energy consumption and
network load variance, or it can achieve a middle ground among these
factors. Subsequently, they present two self-aware heuristic methods:
the Priority-based Energy-efficient Maximization Algorithm (PEMA)
and the Priority-based Load Balancing Algorithm (PEDL). PEMA strives
to maximize flows with minimal energy, whereas PEDL aims to boost
flows while minimizing load variance. The proposed routing strategies
are then put to test through implementation, and simulation outcomes Fig. 6. Estimated Importance of QoS Aspects.

M. Mahdizadeh et al. Journal of Engineering Research xxx (xxxx) xxx

8

demonstrate their superiority over existing methods in terms of flow
success rate, energy conservation, and Load balancing.

Kang et al. [41] developed an SDN-based Intra-Cloud Manager
(S-ICM), which consists of two main modules: monitoring and
decision-making. The monitoring module collects data on various met
rics, including the number of pending requests, delay rates, loss rates,
and average response times for each request, either at specified intervals
or upon the controller’s request. In the decision-making module, re
quests are queued based on their arrival times, and the system directs
each request to the server with the shortest average response time.
S-ICM further adjusts the request dispatch rate to servers based on a
predefined minimal average response time threshold, decreasing the
rate when the number of requests exceeds a certain limit. The study
compares S-ICM with the Honey Bee Foraging Algorithm (HFA) and
Round Robin (RR) methods. The results demonstrate that S-ICM ach
ieves better average response times than the other two approaches.
However, to maintain continuous monitoring of cloud conditions, S-ICM
generates additional control messages across the network, resulting in
increased network overhead.

Sharma et al. [13] investigated the impact of incorporating a load
balancer in a cloud environment. They utilized a combination of
OpenStack and OpenDaylight (ODL) to set up a software-defined net
work-based cloud and integrated a load balancer into the system.
Employing the Round Robin scheduling approach, tasks were allocated
to two identical web servers, WS-1 and WS-2, within OpenStack. Upon
receiving a request, the load balancer directed it to either WS-1 or WS-2
in a rotating fashion. The study compared the processing times of re
quests with and without the load balancer. Results indicated that
implementing a load balancer introduced latency due to the inclusion of
an additional processing component and request queuing. However,
despite this latency, integrating a load balancer enabled the system to
handle multiple requests concurrently without encountering crashes.

Osei Kofi et al. [42] introduced an optimization algorithm tailored
for managing network load in SDN within cloud computing environ
ments. This approach aims to enhance network performance by
combining the IP hash load distribution algorithm with a weighted
scheduler. By employing the hash function, network security is ensured,
while dynamic routing adjustments help prevent congestion. Simula
tions conducted in the study revealed that the proposed algorithm
significantly improves data throughput, aids in congestion management,
enhances accessibility, and reduces network latency. The study un
derscores the importance of enhancing network resource efficiency

through the integration of weighted scheduling and IP hash load dis
tribution techniques, highlighting their contributions to heightened
network reliability, security, and overall performance.

Burke et al. [43] presented a deceptive attack technique in SDN
aimed at manipulating load balancing control through false announce
ments. This approach utilizes a probabilistic model for representation
and develops algorithms to create false announcements, allowing at
tackers to modify attack parameters to achieve specific goals. Such an
attack grants the attacker considerable control over traffic flow and the
ability to influence the volume of traffic affected via a compromised
switch. The study underscores the significant security risks posed by
reliance on false announcements, pointing out that they can lead to se
vere security breaches. When tested against four widely-used load
balancing algorithms, the attack demonstrated a marked ability to
disrupt load balancing within SDN networks, thereby revealing vul
nerabilities in current defense mechanisms. Below is a summary of the
articles, highlighting their strengths and weaknesses (Table 4).

Load balancing in SDN-based IoT networks

Ali et al. [44] proposed a load balancing method for multi-domain
IoT networks using SDN. This method utilizes a Multi-Criteria Deci
sion Making (MCDM) algorithm called the Analytic Network Process
(ANP) for sub-controller selection, and switch migration is modeled
using a 0/1 knapsack algorithm. This method helps to improve the load
balancing of controllers and enhance the QoS in IoT networks. With
increasing traffic in the network, the processing capacity of controllers
may not be sufficient to handle the traffic, but this method provides
significant improvement by optimal selection of sub-controllers and
resource management. By modeling switch migration and using ANP,
this method addresses load balancing and QoS improvement in IoT
networks.

Montazerolghaem et al. [45] introduced an innovative SDN-centered
method designed to balance server and sending device loads while
ensuring the QoS demands of diverse IoT services. Initially, they
established that simultaneously addressing these two issues is NP-hard.
To mitigate time complexity, the problem is bifurcated into: 1) Selection
of servers, and 2) Selection of paths. The system’s architecture com
prises: 1) Infrastructure, where servers, sending devices, and IoT devices
connect via specific interfaces, and 2) A software-defined network
controller linked to servers through the sFlow protocol. This controller
gathers resource consumption statistics (like memory and CPU) and

Table 3
Task Scheduling for Load Balancing in Cloud Computing.

Year Ref. Authors Proposed Algorithm Improvement Parameters Advantages Disadvantages

2014 [35] Tingting Wang
et al.

JLGA Improved QoS Improves execution time and
load balancing

Slow convergence compared
to AGA

2018 [31] Ebadifard et al. PSO-based scheduling
algorithm

Improved using load balancing technique Increases resource utilization
and reduces execution time

Requires tuning of algorithm
parameters

2019 [34] Ashish Gupta
et al.

LB-ACO Improves load balancing and reduces
computation time

Increases resource efficiency,
reduces execution time,
improves load balancing

Requires tuning of algorithm
parameters

2020 [17] Fatemeh
Ebadifard et al.

Autonomous Load
Balancing

Improves communication costs, better load
balancing, better workload distribution

Increases system stability,
reduces response time,
increases resource utilization

Needs further study to fully
understand the drawbacks
and limitations

[33] Asghari et al. SARSA and Genetic
Algorithm

Resource allocation, scheduling and load
balancing

Faster, Accurate Resource
Allocation in Computing

Requires parameter tuning,
high complexity of genetic
algorithm

2022 [32] Shahidani et al. Fog-based
Reinforcement
Learning Algorithm

Improves response time and reduces service
delay

Cloud Data Center Efficiency
and Reduced Service Delays

-

[16] Boonhatai
Kruekaew et al.

MOABCQ VM Scheduling Optimization and Cost-
Effective Resource Use

Efficient VM Load Balancing
and Resource Utilization

Complex Algorithm with
High Computational
Demand

2023 [36] Prathamesh
Vijay Lahande
et al.

Reinforcement
Learning Approach

Improving load balancing and productivity of
cloud resources, optimizing the load
balancing process using resource scheduling
algorithms.

Optimizing Cloud Efficiency
with Reinforcement Learning

Educational Setup for
Reinforcement Learning
Implementation

M. Mahdizadeh et al. Journal of Engineering Research xxx (xxxx) xxx

9

forecasts future resource needs using the NLMS algorithm. Subse
quently, a fuzzy system, informed by the algorithm’s output, sets a load
receiving window for each server. This window defines each server’s
capacity to receive, with the server boasting a broader window being
prioritized for allocation. The outcomes demonstrate enhancements in
IoT QoS metrics, such as throughput and delay, and ensure that IoT
servers remain unburdened even during peak traffic.

Here’s a recap of the articles along with their strengths and weak
nesses (Table 5).

Task scheduling in software-defined networks

Siapoush et al. [47] proposed a method for scheduling large data
tasks using the Tabu algorithm in conjunction with SDN. By separating
network control logic from transmission devices like routers and
switches, this approach improves network performance. The results
indicate that the Tabu algorithm significantly reduces the completion
time for large data tasks and avoids local optimal solutions. By taking

the network state into account and leveraging SDN, this method enables
precise task scheduling and enhances network performance. Overall, the
use of the Tabu algorithm and SDN in scheduling large data tasks leads
to increased network efficiency and shorter task completion times.

Singh et al. [48] introduced an optimization strategy for controller
placement within SDN. This strategy employs the Particle Swarm
Optimization (PSO) algorithm in conjunction with the Capacitated
Controllers Arrangement (CCA) technique, aiming to simultaneously
reduce network latency and uphold network reliability, even in the
event of failures affecting up to n-1 out of n deployed controllers.
Experimental results indicate that this innovative approach to intelligent
controller allocation effectively reduces network latency and optimizes
switch assignments. The findings suggest that utilizing three optimal
controllers can reliably manage the network while minimizing average
network delay. Future research should prioritize the application of
multi-objective optimization techniques to address controller placement
challenges with a focus on enhancing the reliability of the SDN
architecture.

Table 4
Load Balancing in Software-Defined Cloud Computing Network.

Year Ref. Authors Proposed Algorithm Improved Parameters Advantages Disadvantages

2016 [41] Kang and
Choo

SDN-based load balancing
algorithm

Improved efficiency,
manageability, scalability,
and control in cloud
environments

Enhanced security and reliability in
cloud environments, improved load
balancing and resource utilization

Requires more complex
infrastructure and additional
implementation costs

2019 [13] Rinki
Sharma
et al.

S-ICM (SDN-enhanced inter
cloud manager)

Enhances load balancing in
SDN-based cloud
environments

Elevates service levels, improves
resource utilization, and enhances
scalability

-

2020 [43] Quinn
Burke
et al.

Attack method based on
misrepresentation in SDN

Adjustable attack
parameters

The possibility of high control over
traffic, flexibility in setting attack
parameters

Dependence on false declarations that
can lead to security failures Damage
to load balancing of SDN networks
Weaknesses in existing defense
systems

2022 [39] Song et al. Mixed-Flow Load-Balanced
Scheduling (MFLBS)

Optimizing bandwidth
allocation, network load
management, reducing
data transfer delay

Increasing data transmission power,
reducing delay, balancing between
small and large flows, preventing
network disruptions

Requires more complex calculations
for proactive settings, requiring more
resources to implement

2023 [37] Tuğrul
Çavdar
et al.

Discrete Particle Swarm
Optimization with a hybrid cost
function

Load balancing on switches
and links, choosing the path
that minimizes the
connection load

Reducing the time, it takes for
streams to reach their destination,
not losing packets, using less energy,
using less memory, increasing traffic
in the network

-

[38] Yaofang Li
et al.

Proximal Policy Optimization
(PPO)

Reducing energy
consumption, improving
network load balance

Improved network efficiency,
training stability, optimal resource
management, achieving optimal load
balance

The need to adjust the parameters,
the complexity of the multi-objective
optimization problem

[42] Evans Osei
Kofi et al.

HDW (Hash IP load balancing
algorithm with Weighted
scheduler and Dynamic
switching of routing path)

Increased throughput,
congestion control,
improved access, reduced
latency

Increase network security, improve
reliability, improve network
performance

Requires more complex
implementation and management

2024 [40] Naimul
Pathan
et al.

PEMA and PEDL
Algorithm

Energy consumption, load
balance, flow success ratio

Better performance than existing
methods, energy saving, better load
balancing

Longer runtimes are possible

Table 5
Load Balancing in SDN-based IoT Networks.

Year Ref. Authors Proposed Algorithm Improved Parameters Advantages Disadvantages

2019 [45] Ahmadreza
Montazerolghaem
et al.

SDN-based Heuristic
Approach

Improved QoS for IoT services,
load balancing between IoT
servers

Using SDN-based framework to
improve QoS and load balancing,
using heuristic algorithm to reduce
time complexity

Model complexity due to the
use of binary variables

2023 [44] Jehad Ali et al. Multi-domain SDN
Slave Controller Load
Balancing (SDN-SC-
LB)

Optimal selection of sub-
controllers using ANP, switching
migration modeling with 1/
0 knapsack algorithm

Improving load balancing of
controllers, improving quality of
service in IoT networks, optimal
selection of sub-controllers with
empty resources

The need for a simulation
environment or emulator to
evaluate performance in real
conditions

2022 [46] Ahmadreza
Montazerolghaem
et al.

Load balanced
Software-defined
Internet of Multimedia
Things

Quality of service and quality of
experience, such as throughput,
multimedia delay, R factor, and
mean opinion score

a tradeoff between efficiency and
energy using proactive heuristic
algorithms, including the network
sizing method and the NFV technology

Using VMs instead of the
Docker-Container or
OpenStack

M. Mahdizadeh et al. Journal of Engineering Research xxx (xxxx) xxx

10

Here’s a recap of the articles along with their strengths and weak
nesses (Table 6).

Task scheduling in software-defined cloud computing network

Sellami et al. [49] proposed a DRL method to develop an intelligent
network utilizing SDN, with the primary objectives of minimizing
network latency and reducing energy consumption. This method in
volves training the SDN controller to select the optimal scheduling
policy that balances energy efficiency with the minimization of delays
when allocating requests to appropriate fog nodes. Evaluations indicate
that this approach outperforms both deterministic and random task
scheduling strategies in terms of delay and energy efficiency, achieving
an average delay of approximately 12.5 ms. However, a notable limi
tation of this approach is its failure to address load balancing among fog
nodes.

Sellami et al. [50] propose an approach that integrates deep rein
forcement learning into the SDN controller to select the optimal
decision-making policy for task scheduling. This method ranks fog nodes
based on their available energy and current workload status during
execution time, selecting the node with the lowest energy consumption
for task execution, thus reducing processing delays. Subsequently, each
time a request is successfully allocated to a node, its reward is increased,
guiding future requests towards nodes with higher rewards. The pro
posed approach is compared with three algorithms: random, determin
istic, and A3C. According to the results, this approach better preserves
the battery level in fog nodes and achieves an energy efficiency gain of
87 % compared to the other three algorithms.

Al-hammadi et al. [51] Investigated the use of collaborative
computing for emergency task scheduling in Software-Defined Mobile
Edge Computing (MEC) networks. The paper focuses on replacing reg
ular tasks and emergency tasks on MEC servers. Regular tasks are
generated periodically and, if their deadlines are not met, they do not
have serious consequences. On the other hand, emergency tasks have
higher priority and require prompt and timely execution to prevent
serious issues. This paper presents four different scheduling algorithms
for managing emergency tasks, including task allocation to nearby
servers with sufficient computational resources, network congestion
control, selection of suitable collaborative servers, and resource allo
cation for emergency tasks. Extensive simulation results indicate that
this approach performs better than other methods, reducing the overall
task execution time and meeting the deadlines for emergency tasks. It is
also noteworthy that this paper is authored by a team from various
universities in China and Australia and is supported by several research
organizations (Table 7).

Scheduling tasks for load balancing in software-defined cloud computing
network

Sharma et al. [52] investigated an optimization algorithm called
BMU-COA for load balancing in software-defined cloud computing. This
algorithm integrates two optimization techniques: Blue Monkey Opti
mization (BMO) and the Chimp Optimization Algorithm (COA). Simu
lation results show that BMU-COA significantly enhances load balancing

and task allocation optimization in SDN networks, leading to reduced
migration costs and improved migration efficiency compared to other
algorithms. Moreover, BMU-COA demonstrated considerable advance
ments in performance and optimization, potentially surpassing other
algorithms in addressing optimization challenges and load balancing
within networks.

Al-Mansoori et al. [53] proposed a framework that integrates virtual
machines and software-defined networking to optimize cloud resources.
In this approach, they utilized Complex Event Processing (CEP) mech
anisms for data stream processing and analysis. CEP is a powerful
technology that provides quick and comprehensive responses to large
data streams. The assumption in this paper is that a single CEP is
composed of multiple parallel CEPs running in the cloud environment.
Each CEP has dynamic load balancing that synchronizes data based on
their arrival times. Moreover, a software-defined network controller is
employed to optimize cloud network resources. Data processing in this
framework is based on a time-series model that determines the type of
virtual machine. Data streams are queued based on a first-in-first-out
approach. Then, virtual machine allocation is done considering the
size of data streams and the processing power of the virtual machine.
When the data stream size exceeds the virtual machine’s processing
capability, the data is buffered and sent to a virtual machine with better
processing power. According to the results obtained in this framework, a
virtual machine can handle up to 2000 requests in a maximum of
136 seconds compared to traditional cloud computing. Here’s a recap of
the articles along with their strengths and weaknesses (Table 8).

The Fig. 7 shows that load balancing is the most important QoS
factor, followed by throughput, delay, and energy consumption. Packet
loss, security, and delay are the least important factors. The legend
below the chart explains the different categories.

This section explores various strategies and algorithms for load
balancing and task scheduling in software-defined cloud computing
networks, with a strong emphasis on Quality of Service (QoS) aspects.
We examine methods such as adaptive load distribution, reinforcement
learning, meta-heuristic techniques, and multi-criteria decision-making
algorithms. Each of these approaches is specifically designed to: Opti
mize Resource Utilization: Efficient resource allocation ensures that
computational resources are used effectively, which is critical for
maintaining high QoS levels. Minimize Energy Consumption: By opti
mizing load distribution, these strategies contribute to lower energy
usage, which not only reduces operational costs but also supports sus
tainability, an increasingly important aspect of QoS. Enhance Network
Performance: Improved network performance directly correlates with
better QoS, as it leads to reduced latency, increased throughput, and
higher reliability in service delivery. Improve QoS in Cloud Computing
and IoT Environments: The algorithms discussed are tailored to meet
specific QoS requirements, such as response time, availability, and
reliability, which are essential for user satisfaction and effective service
delivery. Additionally, this section addresses challenges related to
controller placement and network security, both of which can signifi
cantly impact QoS. For instance, improper controller placement can lead
to increased latency and reduced network responsiveness, while security
vulnerabilities can compromise service integrity, thereby affecting QoS.
Moreover, we explore the effects of deceptive attack techniques on load

Table 6
Task Scheduling in Software-Defined Networks.

Year Ref. Authors Proposed Algorithm Improved Parameters Advantages Disadvantages

2023 [47] Mina Soltani
Siapoush
et al.

Tabu Search Approach Completion time of big data
tasks, scheduling accuracy, local
optimal optimization

Improve network performance and
task completion time, use SDN to
improve scheduling accuracy

The need for a network environment
that supports SDN is more complex to
implement than traditional methods

2024 [48] Gagan Deep
Singh et al.

Particle Swarm
Optimization (PSO) and
Capacitated Controllers
Arrangement (CCA)

Reducing network latency,
increasing network reliability up
to the failure of n− 1 controller
out of n installed controllers

Optimizing network latency,
increasing network reliability,
optimizing switch allocations,
intelligent management of
controllers

The need for more experiments on
different SDN architectures, the need
to adapt the proposed method to
changing network conditions

M. Mahdizadeh et al. Journal of Engineering Research xxx (xxxx) xxx

11

balancing within software-defined networks. Such attacks can disrupt
resource allocation and degrade service quality, making it crucial to
develop robust strategies that not only optimize performance but also
safeguard against security threats. Collectively, these contributions
provide valuable insights and solutions for addressing the complexities
associated with load balancing and task scheduling in software-defined
cloud computing networks, while maintaining a strong focus on
enhancing QoS.

Simulation tools

Contrary to real-world deployment, utilizing simulation tools can
offer cost-saving benefits and greater management flexibility. None
theless, it’s essential to note that simulation outcomes are statistically
derived based on specific configurations. Therefore, if the settings
significantly diverge from the validated environment, the simulation
results may not be accurate [54]. Tools like CloudSimSDN and the

combined Mininet and POX platform introduced by Teixeira et al. [55],
are employed concurrently to assess cloud computing within an SDN
framework.

Overview of mininet simulator

Initially conceived by Stanford University professors, Mininet was
developed as an educational and research tool focusing on networking
technologies. Over time, it has evolved to facilitate the creation of vir
tual SDN, comprising an open-flow controller [56], an Ethernet network
with multiple OpenFlow-enabled switches, and interconnected hosts
[57]. Mininet serves as a simulation platform tailored for constructing
and emulating SDN networks. It proves beneficial for designing, vali
dating, and assessing network programs and algorithms. Users can
configure various networks by integrating components like switches,
controllers, servers, and establishing diverse connections. Subsequently,
these networks can host and test different programs and algorithms.
Leveraging the Python programming language, Mininet facilitates the
creation and orchestration of SDN networks, offering comprehensive
simulation capabilities. This platform empowers developers and re
searchers to emulate and evaluate software-driven networks, elimi
nating the necessity for tangible hardware [58].

Being an open-source platform, Mininet allows users to customize
and adapt it to suit their requirements for research and development
within the SDN domain. Within Mininet, the SDN controller operates as
an application within a virtual machine. This application interfaces with
network switches via the OpenFlow protocol, managing and directing
network traffic flows [59].

Definition of some SDN controllers
Mininet facilitates the integration of diverse SDN controllers, each

offering its distinct set of features and capabilities. Some of the known
controllers are briefly:

• POX: A Python-based open-source SDN controller. POX stands out for
its adaptability and versatility, making it suitable for various
research and developmental endeavors [60].

Table 7
Task Scheduling in Software-Defined Cloud Computing Network.

Year Ref. Authors Propoed Algorithm Improved Parameters Advantages Disadvantages

2020 [49] Sellami
et al.

Deep Reinforcement
Learning (DRL)

Increased energy efficiency,
improved response time,
optimized task allocation in IoT
networks

Reduced energy consumption, improved
response time, optimized task allocation,
increased network efficiency

Need for large training data,
complexity of DRL algorithm
training, need for interactive
environment for training

2022 [50] Sellami
et al.

Deep reinforcement
learning-based task
scheduling and
transfer

Optimizing energy efficiency,
scalability, latency, bandwidth.

1. Using deep reinforcement learning for
intelligent scheduling of tasks. 2.
Improving energy efficiency in Internet of
Things networks. 3.Improving the
scalability and reducing the delay in the
transfer of tasks.

1. The need for computing resources
for deep reinforcement learning. 2.
Complexity in implementing and
adjusting the algorithm.

2024 [51] Al-
hammadi
et al.

Scheduling Algorithms
for Emergency Tasks in
MEC Networks

1. Allocation of tasks to nearby
servers with sufficient computing
resources 2. Control of network
congestion 3. Selection of suitable
partner servers

1. Improving overall task execution time
2. Responding to emergency task
deadlines 3. Improving MEC network
performance in emergency situations

1. The need for collaborative
computing and increasing
complexity 2. The possibility of
increasing computing costs due to the
use of additional resources

Table 8
Scheduling Tasks for Load Balancing in Software-Defined Cloud Computing Network.

Year Ref. Authors Proposed Algorithm Improved Parameters Advantages Disadvantages

2020 [53] Ahmed Al-
mansoori
et al.

Cloud-based framework
coupling virtual
machines and SDN

Cloud resource allocation
algorithm

Enhanced resource allocation to streaming
data processing applications

Potential lack of utilization
of advanced AI methods

2024 [52] Sonam
Sharma et al.

BMU-COA (Blue Monkey
Updated Chimp
Optimization Algorithm)

Load balancing, optimization in
assigning tasks, reducing
migration cost, increasing
migration efficiency

Significant improvement in load balancing and
optimization, reduced migration cost,
increased migration efficiency, better
performance than other algorithms

Limited information about
the simulation and detailed
results of the paper

Fig. 7. Estimated Importance of QoS Aspects.

M. Mahdizadeh et al. Journal of Engineering Research xxx (xxxx) xxx

12

• Ryu: Another Python-based open-source SDN controller. Ryu is
tailored to be lightweight and user-friendly, positioning it as an ideal
option for those new to the field [61].

• Floodlight: A mature SDN controller crafted by Big Switch Networks.
Floodlight is known for its resilience and scalability, making it apt for
managing expansive network infrastructures [62].

Installing a controller in Mininet

1. Select a controller: select for an SDN controller that aligns with your
specific needs and criteria.

2. Install the controller: connect to the installation guidelines outlined
in the controller’s documentation for its virtual deployment.

3. Configure the controller: 3. Controller Configuration: Use the con
troller’s CLI to fine-tune its configurations and parameters.

4. Link switches to the controller: Employ the CLI to establish connec
tions between network switches and the designated controller [63].

5. Manage network traffic: Utilize the controller’s CLI or its graphical
user interface to oversee and regulate network traffic patterns. By
adhering to these guidelines, you can effectively deploy an SDN
controller within Mininet, initiating the process of simulating and
assessing SDN infrastructures [58].

Overview of CloudSimSDN simulator

CloudSimSDN is a simulation platform specifically designed for
Software-Defined Networking (SDN) in cloud environments. It enables
the creation and evaluation of virtual network performance over simu
lated physical infrastructures. Building on the capabilities of CloudSim,
CloudSimSDN can emulate the computational components commonly
found in data centers, allowing for the simulation and modeling of SDN.
The platform incorporates various modules to mimic network traffic
patterns and the actions of SDN controllers. By providing centralized
control over network switches for precise traffic management, Cloud
SimSDN offers users tools to improve QoS, energy efficiency, and multi-
tenant management within cloud data centers [64].

Synopsis of the experimental platforms

Both CloudSimSDN and Mininet serve as valuable instruments for
simulating and assessing SDN-centric networks, albeit with distinct
features catering to varied applications. Here’s an overview of their
functionalities and uses:

CloudSimSDN

• Acts as a simulation framework tailored for SDN within cloud envi
ronments, constructed atop CloudSim.

• Enables the representation and evaluation of virtual network per
formance over simulated physical infrastructures.

• Utilizes diverse components to replicate network traffic patterns and
SDN controller actions.

• Supports the assessment of resource management strategies perti
nent to cloud data centers.

Mininet

• Functions as a simulation utility specifically designed for crafting
OpenFlow network layouts.

• Operates on the Linux OS, allowing the instantiation of numerous
nodes featuring diverse network configurations.

• Emphasizes network resources and facilitates the assessment of
traffic management policies under SDN frameworks.

• Has the capability to execute external SDN controllers and Linux-
based applications on virtual nodes.

However, CloudSimSDN primarily focuses on centralized network
and computational resource management within cloud data centers. On
the other hand, Mininet specializes in simulating network architectures,
configuring OpenFlow, and assessing SDN controller performance.
Therefore, the choice between these tools depends on your specific goals
and requirements. If your objective is to simulate and evaluate virtual
network performance within cloud environments, CloudSimSDN is the
more suitable option. Conversely, if your focus is on designing Open
Flow network structures and testing SDN controller functionalities,
Mininet would be the preferred tool.

In this section, simulation tools like Mininet and CloudSimSDN were
introduced for evaluating and simulating SDN-based and cloud net
works. Mininet serves as a simulation platform enabling the creation and
simulation of virtual SDN networks, while CloudSimSDN is used for
simulating the performance of virtual networks in cloud environments.
These two tools offer various capabilities for traffic management, quality
of service improvement, and computational resource management in
SDN ad cloud networks.

Future challenges

Future challenges in this domain might encompass:

1. Scalability: With the continuous expansion of cloud computing, it’s
imperative to ensure algorithms and systems can scale effectively to
manage growing workloads and data sizes.

2. Security: Safeguarding data privacy and security within cloud in
frastructures remains a pressing concern. Developing resilient secu
rity protocols to safeguard confidential data is paramount.

3. Energy Efficiency: Enhancing the energy efficiency of cloud systems
to minimize environmental footprint and operational expenses
stands as a significant focus for future studies.

4. Dynamic Workloads: Tailoring algorithms to adeptly manage fluc
tuating workloads and diverse resource requirements in real-time
presents a challenge requiring attention for peak efficiency.

Fig. 8. Mininet features.

M. Mahdizadeh et al. Journal of Engineering Research xxx (xxxx) xxx

13

5. Interoperability: Boosting interoperability among varied cloud plat
forms and services is essential to streamline data transfer and
resource allocation.

6. Cost Optimization: Identifying strategies to streamline costs linked
with cloud services, while upholding superior performance and ser
vice quality, is a continuous challenge organization will grapple
with.

Addressing these challenges through research is pivotal for the pro
gressive evolution and successful integration of cloud computing tech
nologies across diverse sectors.

Conclusion

Based on the literature reviewed, intelligent algorithms and rein
forcement learning techniques are pivotal in enhancing load balancing
and optimizing cloud resource utilization. Notably, the Intelligent Rule-
Based Metaheuristic Task Scheduling algorithm stands out for its
effectiveness in improving service quality within cloud environments.
Additionally, hybrid approaches such as MOABCQ, which merges the
strengths of the Artificial Bee Colony algorithm with Q-learning, have
demonstrated significant improvements in cloud resource performance
and efficiency. Consequently, the application of intelligent algorithms
and reinforcement learning can lead to optimal outcomes in refining
load balancing and boosting cloud resource efficiency. These methods
are particularly valuable in enhancing the effectiveness and productivity
of cloud resources in complex and demanding scenarios. Moreover,
these algorithms not only improve load balancing and resource utiliza
tion but also contribute to reducing response times, elevating service
quality, and enhancing the overall efficiency and performance of cloud
infrastructure. Looking ahead, several challenges must be addressed to
further advance the field. These include: Scalability: As cloud environ
ments grow in complexity, ensuring that algorithms can scale effectively
to manage increased data volumes and user demands is crucial. Security:
With the rise of cyber threats, developing robust security measures
within intelligent algorithms is essential to protect sensitive data and
maintain system integrity. Interoperability: Future research should focus
on ensuring that diverse cloud platforms and services can work seam
lessly together, enhancing user experience and resource sharing. Real-
time Adaptability: The need for algorithms that can adapt in real-time
to changing conditions and workloads will be vital for optimizing per
formance and resource allocation. By addressing these future challenges,
researchers and practitioners can continue to enhance the capabilities of
cloud computing and software-defined networks, paving the way for
more efficient and resilient systems.

CRediT authorship contribution statement

Masoumeh Mahdizadeh: Writing – original draft, Software, Re
sources, Methodology. Ahmadreza Montazerolghaem: Writing – re
view & editing, Supervision, Project administration, Conceptualization.
Kamal Jamshidi: Supervision.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

References

[1] Ahmed Hazim Alhilali, Ahmadreza Montazerolghaem, Artificial intelligence based
load balancing in SDN: a comprehensive survey, Internet Things 22 (2023) 100814.

[2] S. Imanpour, A. Montazerolghaem and S. Afshari, Load Balancing of Servers in
Software-defined Internet of Multimedia Things using the Long Short-Term
Memory Prediction Algorithm, 2024 in: Proceedings of the Tenth International

Conference on Web Research (ICWR), Tehran, Iran, Islamic Republic of, 2024, 291-
296, doi: 10.1109/ICWR61162.2024.10533321.

[3] S. Imanpour, M. Kazemiesfeh and A. Montazerolghaem, Multi-level threshold SDN
controller dynamic load balancing, 2024 in: Proceedings of the Eighth
International Conference on Smart Cities, Internet of Things and Applications
(SCIoT), Mashhad, Iran, Islamic Republic of, 2024, 88-93, doi: 10.1109/SCIoT
62588.2024.10570100.

[4] A. Mohamed, M. Hamdan, S. Khan, A. Abdelaziz, S.F. Babiker, M. Imran, M.
N. Marsono, Software-defined networks for resource allocation in cloud computing:
a survey, Comput. Netw. 195 (2021) 108151.

[5] A. Montazerolghaem, Efficient Resource Allocation for Multimedia Streaming in
Software-Defined Internet of Vehicles, IEEE Trans. Intell. Transp. Syst. 24 (12)
(2023) 14718–14731, https://doi.org/10.1109/TITS.2023.3303404.

[6] Azodolmolky, S., Wieder, P., & Yahyapour, R. (2013, June). SDN-based cloud
computing networking, in: Proceedings of the Fifteenth international conference on
transparent optical networks (ICTON), IEEE, 1-4.

[7] Mikkilineni, R., & Sarathy, V. (2009, June). Cloud computing and the lessons from
the past, in: Proceedings of the Eighteenth IEEE International Workshops on
Enabling Technologies: Infrastructures for Collaborative Enterprises, IEEE, 57-62.

[8] W. Xia, Y. Wen, C.H. Foh, D. Niyato, H. Xie, A survey on software-defined
networking, IEEE Commun. Surv. Tutor. 17 (1) (2014) 27–51.

[9] I. Behera, S. Sobhanayak, Task scheduling optimization in heterogeneous cloud
computing environments: a hybrid GA-GWO approach, J. Parallel Distrib. Comput.
183 (2024) 104766.

[10] Lakhwani, K., Kaur, R., Kumar, P., & Thakur, M. (2018, August). An extensive
survey on data authentication schemes in cloud computing. In 2018 4th
International Conference on Computing Sciences (ICCS) (pp. 59-66). IEEE.

[11] Yunli Cheng, A. Vijayaraj, Kiran Sree Pokkuluri, Taybeh Salehnia,
Ahmadreza Montazerolghaem, Roqia Rateb, Vehicular fog resource allocation
approach for vanets based on deep adaptive reinforcement learning combined with
heuristic information, IEEE Access (2024).

[12] A.A. Abbasi, A. Abbasi, S. Shamshirband, A.T. Chronopoulos, V. Persico,
A. Pescapè, Software-defined cloud computing: a systematic review on latest trends
and developments, IEEE Access 7 (2019) 93294–93314.

[13] B. Kang, H. Choo, An SDN-enhanced load-balancing technique in the cloud system,
J. Supercomput. 74 (2018) 5706–5729.

[14] F. Ebadifard, S.M. Babamir, A PSO-based task scheduling algorithm improved
using a load-balancing technique for the cloud computing environment, Concurr.
Comput. Pract. Exp. 30 (12) (2018) e4368.

[15] N. Sarrafzade, R. Entezari-Maleki, L. Sousa, A genetic-based approach for service
placement in fog computing, J. Supercomput. 78 (8) (2022) 10854–10875.

[16] B. Kruekaew, W. Kimpan, Multi-objective task scheduling optimization for load
balancing in cloud computing environment using hybrid artificial bee colony
algorithm with reinforcement learning, IEEE Access 10 (2022) 17803–17818.

[17] H. Kim, N. Feamster, Improving network management with software defined
networking, IEEE Commun. Mag. 51 (2) (2013) 114–119.

[18] S. Alnajdi, M. Dogan, E. Al-Qahtani, A survey on resource allocation in cloud
computing. International Journal on Cloud Computing: Services and Architecture
(IJCCSA) 6 (2016) 5.

[19] N. Akhter, M. Othman, Energy aware resource allocation of cloud data center:
review and open issues, Clust. Comput. 19 (2016) 1163–1182.

[20] A. Hameed, A. Khoshkbarforoushha, R. Ranjan, P.P. Jayaraman, J. Kolodziej,
P. Balaji, A. Zomaya, A survey and taxonomy on energy efficient resource
allocation techniques for cloud computing systems, Computing 98 (2016)
751–774.

[21] X. Wang, L. Zhang, Y. Laili, Y. Liu, F. Li, Z. Chen, C. Zhao, Large-scale hybrid task
scheduling in cloud-edge collaborative manufacturing systems with FCRN-assisted
random differential evolution. The, Int. J. Adv. Manuf. Technol. 130 (1) (2024)
203–221.

[22] H. Yin, X. Huang, E. Cao, A cloud-edge-based multi-objective task scheduling
approach for smart manufacturing lines, J. Grid Comput. 22 (1) (2024) 9.

[23] R. Nithiavathy, S. Janakiraman, M. Deva Priya, Adaptive guided differential
evolution-based slime mould algorithm-based efficient multi-objective task
scheduling for cloud computing environments, Trans. Emerg. Telecommun.
Technol. 35 (1) (2024) e4902.

[24] H. Zavieh, A. Javadpour, A.K. Sangaiah, Efficient task scheduling in cloud
networks using ANN for green computing, Int. J. Commun. Syst. (2024).

[25] S.D.S. Mustapha, P. Gupta, Fault aware task scheduling in cloud using min-min and
DBSCAN, Internet Things Cyber-Phys. Syst. 4 (2024) 68–76.

[26] C. Barut, G. Yildirim, Y. Tatar, An intelligent and interpretable rule-based
metaheuristic approach to task scheduling in cloud systems, Knowl. -Based Syst.
284 (2024) 111241.

[27] S. Iftikhar, M.M.M. Ahmad, S. Tuli, D. Chowdhury, M. Xu, S.S. Gill, S. Uhlig,
HunterPlus: AI based energy-efficient task scheduling for cloud–fog computing
environments, Internet Things 21 (2023) 100667.

[28] S. Azizi, M. Shojafar, J. Abawajy, R. Buyya, Deadline-aware and energy-efficient
IoT task scheduling in fog computing systems: a semi-greedy approach, J. Netw.
Comput. Appl. 201 (2022) 103333.

[29] M.I. Khaleel, Region-aware dynamic job scheduling and resource efficiency for
load balancing based on adaptive chaotic sparrow search optimization and
coalitional game in cloud computing environments, J. Netw. Comput. Appl. 221
(2024) 103788.

[30] S. Simaiya, U.K. Lilhore, Y.K. Sharma, K.B. Rao, V.V.R. Maheswara Rao, A. Baliyan,
R. Alroobaea, A hybrid cloud load balancing and host utilization prediction method
using deep learning and optimization techniques, Sci. Rep. 14 (1) (2024) 1337.

M. Mahdizadeh et al. Journal of Engineering Research xxx (xxxx) xxx

14

http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref1
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref1
https://doi.org/10.1109/ICWR61162.2024.10533321
https://doi.org/10.1109/SCIoT62588.2024.10570100
https://doi.org/10.1109/SCIoT62588.2024.10570100
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref2
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref2
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref2
https://doi.org/10.1109/TITS.2023.3303404
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref4
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref4
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref5
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref5
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref5
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref6
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref6
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref6
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref6
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref7
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref7
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref7
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref8
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref8
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref9
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref9
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref9
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref10
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref10
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref11
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref11
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref11
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref12
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref12
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref13
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref13
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref13
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref14
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref14
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref15
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref15
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref15
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref15
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref16
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref16
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref16
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref16
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref17
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref17
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref18
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref18
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref18
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref18
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref19
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref19
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref20
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref20
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref21
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref21
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref21
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref22
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref22
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref22
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref23
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref23
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref23
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref24
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref24
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref24
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref24
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref25
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref25
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref25

[31] F. Ebadifard, S.M. Babamir, A PSO-based task scheduling algorithm improved
using a load-balancing technique for the cloud computing environment, Concurr.
Comput. Pract. Exp. 30 (12) (2018) e4368.

[32] F. Ramezani Shahidani, A. Ghasemi, A. Toroghi Haghighat, A. Keshavarzi, Task
scheduling in edge-fog-cloud architecture: a multi-objective load balancing
approach using reinforcement learning algorithm, Computing (2023) 1–23.

[33] A. Asghari, M.K. Sohrabi, F. Yaghmaee, Task scheduling, resource provisioning,
and load balancing on scientific workflows using parallel SARSA reinforcement
learning agents and genetic algorithm. The, J. Supercomput. 77 (2021)
2800–2828.

[34] Gupta, A., & Garg, R. (2017, September). Load balancing based task scheduling
with ACO in cloud computing. In 2017 International conference on computer and
applications (ICCA) (pp. 174-179). IEEE.

[35] Wang, T., Liu, Z., Chen, Y., Xu, Y., & Dai, X. (2014, August). Load balancing task
scheduling based on genetic algorithm in cloud computing, in: Proceedings of the
IEEE Twelfth International Conference on Dependable, Autonomic and Secure
Computing , IEEE, 146-152.

[36] P.V. Lahande, P.R. Kaveri, J.R. Saini, K. Kotecha, S. Alfarhood, Reinforcement
Learning approach for optimizing cloud resource utilization with load balancing,
IEEE Access (2023).

[37] T. Çavdar, Ş. Aymaz, New approach to dynamic load balancing in software-defined
network-based data centers, ETRI J. (2023).

[38] Y. Li, B. Wu, Software-defined heterogeneous edge computing network resource
scheduling based on reinforcement learning, Appl. Sci. 13 (1) (2022) 426.

[39] B. Song, Y. Chang, X. Zhang, A. Al-Dhelaan, M. Al-Dhelaan, Mixed-flow load-
balanced scheduling for software-defined networks in intelligent video surveillance
Cloud Data Center, Appl. Sci. 12 (13) (2022) 6475.

[40] M.N. Pathan, M. Muntaha, S. Sharmin, S. Saha, M.A. Uddin, F.N. Nur, S. Aryal,
Priority based energy and load aware routing algorithms for SDN enabled data
center network, Comput. Netw. 240 (2024) 110166.

[41] B. Kang, H. Choo, An SDN-enhanced load-balancing technique in the cloud system,
J. Supercomput. 74 (2018) 5706–5729.

[42] E. Osei Kofi, E. Ahene, Enhanced network load balancing technique for efficient
performance in software defined network, Plos One 18 (4) (2023) e0284176.

[43] Q. Burke, P. McDaniel, T. La Porta, M. Yu, T. He, Misreporting attacks against load
balancers in software-defined networking, Mob. Netw. Appl. (2024) 1–16.

[44] J. Ali, R.H. Jhaveri, M. Alswailim, B.H. Roh, ESCALB: An effective slave controller
allocation-based load balancing scheme for multi-domain SDN-enabled-IoT
networks, J. King Saud. Univ. -Comput. Inf. Sci. 35 (6) (2023) 101566.

[45] A. Montazerolghaem, M.H. Yaghmaee, Load-balanced and QoS-aware software-
defined Internet of Things. IEEE Internet of Things, Journal 7 (4) (2020)
3323–3337.

[46] A. Montazerolghaem, Software-defined internet of multimedia things: energy-
efficient and load-balanced resource management, IEEE Internet Things J. 9 (3)
(2022) 2432–2442, https://doi.org/10.1109/JIOT.2021.3095237.

[47] M.S. Siapoush, S. Jamali, A. Badirzadeh, Software-defined networking enabled big
data tasks scheduling: a tabu search approach, J. Commun. Netw. 25 (1) (2023)
111–120.

[48] G.D. Singh, V. Tripathi, A. Dumka, R.S. Rathore, M. Bajaj, J. Escorcia-Gutierrez,
L. Prokop, A novel framework for capacitated SDN controller placement: balancing
latency and reliability with PSO algorithm, Alex. Eng. J. 87 (2024) 77–92.

[49] Sellami, B., Hakiri, A., Yahia, S.B., & Berthou, P. (2020, November). Deep
reinforcement learning for energy-efficient task scheduling in SDN-based IoT
network, in: Proceedings of the IEEE Ninteenth International Symposium on
Network Computing and Applications (NCA), IEEE, 1-4.

[50] B. Sellami, A. Hakiri, S.B. Yahia, P. Berthou, Energy-aware task scheduling and
offloading using deep reinforcement learning in SDN-enabled IoT network,
Comput. Netw. 210 (2022) 108957.

[51] I. Al-hammadi, M. Li, S.M. Islam, E. Al-Mosharea, Collaborative computation
offloading for scheduling emergency tasks in SDN-based mobile edge computing
networks, Comput. Netw. 238 (2024) 110101.

[52] S. Sharma, D. Seth, Blue monkey updated chimp optimization algorithm for
enhanced load balancing model, Expert Syst. Appl. 242 (2024) 122578.

[53] Al-Mansoori, A., Abawajy, J., & Chowdhury, M. (2020, May). BDSP in the cloud:
scheduling and load balancing utlizing SDN and CEP, in: Proceedings of the
Twentieth IEEE/ACM International Symposium on Cluster, Cloud and Internet
Computing (CCGRID) (pp. 827-835). IEEE.

[54] A. Mohamed, M. Hamdan, S. Khan, A. Abdelaziz, S.F. Babiker, M. Imran, M.
N. Marsono, Software-defined networks for resource allocation in cloud
computing: a survey, Comput. Netw. 195 (2021) 108151.

[55] Teixeira, J., Antichi, G., Adami, D., Del Chiaro, A., Giordano, S., & Santos, A.
(2013, October). Datacenter in a box: test your SDN cloud-datacenter controller at
home. In 2013 Second European Workshop on Software Defined Networks (pp. 99-
104). IEEE.

[56] Bifulco, R., Canonico, R., Brunner, M., Hasselmeyer, P., & Mir, F. (2012, October).
A practical experience in designing an openflow controller. In 2012 European
Workshop on Software Defined Networking (pp. 61-66). IEEE.

[57] K.K. Sharma, M. Sood, Mininet as a container-based emulator for software defined
networks, Int. J. Adv. Res. Comput. Sci. Softw. Eng. 4 (12) (2014).

[58] N. Gupta, M.S. Maashi, S. Tanwar, S. Badotra, M. Aljebreen, S. Bharany,
A comparative study of software defined networking controllers using mininet,
Electronics 11 (17) (2022) 2715.

[59] Lantz, B., Heller, B., & McKeown, N. (2010, October). A network in a laptop: rapid
prototyping for software-defined networks, in: Proceedings of the Ninth ACM
SIGCOMM Workshop on Hot Topics in Networks, 1-6.

[60] POX controller. POX website: 〈www.pox.readthedocs.io/en/latest/〉. (Accessed26
April 2024) 2024.

[61] Ryu controller. Ryu website: 〈www.ryu.readthedocs.io/en/latest/. (Accessed26
April 2024) 2024.

[62] Floodlight controller. Floodlight website: 〈www.floodlight.readthedocs.io/en/
latest/〉. (Accessed26 April 2024) 2024.

[63] Network simulator. Mininet website: 〈www.mininet.org〉. (Accessed26 April 2024)
2024.

[64] Son, J., Dastjerdi, A.V., Calheiros, R.N., Ji, X., Yoon, Y., & Buyya, R. (2015, May).
Cloudsimsdn: modeling and simulation of software-defined cloud data centers, in:
Proceedings of the Fifteenth IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing (pp. 475-484). IEEE.

M. Mahdizadeh et al. Journal of Engineering Research xxx (xxxx) xxx

15

http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref26
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref26
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref26
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref27
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref27
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref27
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref28
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref28
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref28
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref28
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref29
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref29
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref29
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref30
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref30
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref31
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref31
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref32
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref32
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref32
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref33
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref33
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref33
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref34
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref34
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref35
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref35
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref36
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref36
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref37
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref37
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref37
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref38
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref38
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref38
https://doi.org/10.1109/JIOT.2021.3095237
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref40
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref40
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref40
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref41
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref41
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref41
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref42
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref42
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref42
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref43
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref43
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref43
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref44
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref44
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref45
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref45
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref45
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref46
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref46
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref47
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref47
http://refhub.elsevier.com/S2307-1877(24)00277-3/sbref47
http://www.pox.readthedocs.io/en/latest/
http://www.ryu.readthedocs.io/en/latest/
http://www.floodlight.readthedocs.io/en/latest/
http://www.floodlight.readthedocs.io/en/latest/
http://www.mininet.org

	Task scheduling and load balancing in SDN-based cloud computing: A review of relevant research
	Introduction
	Scope and contribution
	Organization

	Comparison of review articles
	Task scheduling and load balancing in cloud computing
	Task scheduling in cloud computing
	Task scheduling for load balancing in cloud computing

	Task scheduling and load balancing in software-defined cloud computing network
	Load balancing in software-defined cloud computing network
	Load balancing in SDN-based IoT networks
	Task scheduling in software-defined networks
	Task scheduling in software-defined cloud computing network
	Scheduling tasks for load balancing in software-defined cloud computing network

	Simulation tools
	Overview of mininet simulator
	Definition of some SDN controllers
	Installing a controller in Mininet

	Overview of CloudSimSDN simulator
	Synopsis of the experimental platforms
	CloudSimSDN
	Mininet

	Future challenges
	Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	References

